

Weibull-based Forecasting of R&D Program Budgets Published in Winter 02 JCAM

Presented by

Capt Thomas W. Brown

Tactical Data Links Program
Chief of Cost, ESC/DIV
Hanscom AFB, MA

thomas.brown@hanscom.af.mil 781-377-8052

> Co-Authors: Maj Edward D. White Lt Col Mark A. Gallagher

Research Sponsor

The Office of the Secretary of Defense Program Analysis and Evaluation

Develop an Analytical Model to Phase Cost Estimates for New R&D Program Starts to:

- Assists PA&E in reviewing appropriate R&D program funding and
- Aid Military Departments in forecasting appropriate budget profiles

Overview

- Background
- Methodology
- Results
- Conclusion

Background

- Theory: R&D program expenditures are Rayleigh distributed
 - Norden (1970) models manpower utilization
 - Putnam (1978) models software development
 - Watkins (1982) and Abernethy (1984) model defense acquisition data
 - Gallagher and Lee (1996) model to final cost and schedule for ongoing programs
 - Lee, Hogue, and Gallagher (1997) forecast budget profiles from a point estimate

Weibull Function

$$F(t) = 1 - e^{-\left(\frac{t - \gamma}{\delta}\right)^{\beta}}$$
Rayleigh is the Degenerative form

- The Rayleigh is the Degenerative form of the Weibull
 - Fixed shape parameter, where $\beta = 2$
 - Eliminate the location γ parameter
- Theoretically Limits the Rayleigh

Rayliegh Limitations

- Constant shape parameter $(\beta = 2)$
 - too rigid in predicting the tail portion of expenditures
- No location parameter ($\gamma = 0$)
 - lacks the ability to model the relative program start
- Porter (2001) & Unger (2001) find that Weibull distribution more often supports R&D expenditures

Weibull Model

$$W(t) = d \left[1 - e^{-\left[\frac{t - \gamma}{\delta} \right]^{\beta}} \right]$$

t = Time in years

 γ = Weibull location parameter (gamma)

B = Weibull shape parameter (beta)

 δ = Weibull scale parameter (*delta*)

d = cost factor, where d = D/.97*

*Lee, Hogue, & Gallagher (1997)

Research Question

Is there a mathematical relationship that can predict the requisite shape and scale parameters to forecast Weibull-based budgets?

Overview

- Background
- Methodology
- Results
- Conclusion

Methodology

- Collect & Build Program Model Data
- Multiple Regression Analysis
- Use Lee, Hogue, & Gallagher's (1997) Method of Nonlinear Estimation to Forecast Weibull-based Budgets

Collect & Build Program Model Data

- Data Collection
- Normalize the Data
- Nonlinear Parameter Estimation
- Regression Model Data

Data Collection

- Source: Selective Acquisition Report (SAR)
- Selection Criteria: R&D programs that ...
 - were not terminated and
 - had at least 3 budget years to MSIII
- Database consists of 128 R&D programs

Normalize the Data

Budgets to Expenditures

OSD Hypothetical Outlay Rates

S_1	S_2	S ₃	S 4	S ₅
50%	30%	10%	7%	3%

Fiscal Year	Budget, B_i	Yr-1	Yr-2	Yr-3	Yr-4	Yr-5	Yr-6	Yr-7	Yr-8	Yr-9
2002	50	25.0	15.0	5.0	3.5	1.5				
2003	200		100.0	60.0	20.0	14.0	6.0			
2004	500			250.0	150.0	50.0	35.0	15.0		
2005	150				75.0	45.0	15.0	10.5	4.5	
2006	100					50.0	30.0	10.0	7.0	3.0
Current \$ Ex	penditures	25.0	115.0	315.0	248.5	160.5	86.0	35.5	11.5	3.0
Inflation Inde	X	1.000	1.025	1.050	1.075	1.100	1.125	1.150	1.175	1.200
Constant \$ Ex	xpenditures	25.0	112.2	300.0	231.2	145.9	76.4	30.9	9.8	2.5

Parameter Estimation

Build our regression response data (Y's)

- Estimate the Weibull β , δ , and γ parameters
- Nonlinear estimation (MS Excel Solver)
- Weibull parameters are the changing cells
- Minimize the $\Sigma(\text{errors})^2$ between the actual cumulative constant dollar expenditures and the Weibull-based cumulative constant dollar expenditures

Model Building Data

Regression Model Data

- Response or dependent variables (Y's)
 - Weibull shape and scale least squares estimates
- Predictors or independent variables (X's)
 - Lead service (Air Force, Navy, Army)
 - Program system type (Aircraft, Electronic, etc.)
 - Total program cost in constant-dollars
 - Total program duration to MSIII in years

Regression Analysis

- Randomly selected 102 (80%) programs to build our shape and scale regression models
- Response (Y's)
 - Least Squares Estimated (LSE) Weibull shape and scale
- Predictors (X's)
 - Cost factor, duration, service branch, and system type
- Test for a mathematical relationship to predict the LSE Weibull shape and scale parameters

Forecast Weibull-based Budgets

- Convert budgets to a total program cost
- Use Lee, Hogue, and Gallagher's (1997) method to forecast Weibull-based budgets from a total program cost
 - convert the total program cost to Weibull-based current-dollar expenditures
 - use MS Excel Solver as our Nonlinear estimation tool
 - target cell minimizes the $\Sigma(\text{errors})^2$ between the Weibull-based current-dollar expenditures and estimated current dollar expenditures
 - changing sells are the year budget dollars

Total Program Cost

• Convert 128 completed budgets to a total program cost, *D*, with

$$O_i = B_i S_1 + B_{i-1} S_2 + B_{i-2} S_3 + ... + B_{i-3} S_J,$$

 $O_i^* = O_i / c_i, \text{ and } D = \sum_i O_i^*$

• Convert the total program cost, D, to a cost factor, d, with $D = E(t_{final}) = 0.97d*$

*Lee, Hogue, and Gallagher (1997)

Model Weibull-Based Expenditures

• Using the regression models to predicted the shape & scale values and applying the cost factor, d, we model Weibull-based cumulative constant dollar expenditures, $W(t_i)$, with

$$W(t_i) = d \cdot \left[1 - e^{-\left(\frac{t_i - \gamma}{\delta}\right)^{\beta}} \right]$$

Cumulative Constant \$ to Annual Current \$

• Convert Weibull-based constant dollar cumulative expenditures $W(t_i)$ to current dollar annual expenditures, \hat{O}_i , with

$$O_i = W(t_i) - W(t_{i-1})$$
 and $\hat{O}_i = O_i c_i$

Weibull-Based Budgets

- Apply Lee, Hogue, & Gallagher's (1997) nonlinear estimation method to forecast Weibull-based budgets
- Estimate current dollar expenditures, \tilde{O}_i , using $\tilde{O}_i = \hat{B}_i s_1 + \hat{B}_{i-1} s_2 + ... \hat{B}_{i-J} s_J$, where \hat{B}_i are the changing cells in MS Excel Solver
- Minimize $\Sigma(\text{errors})^2$ between Weibull-based expenditures, \hat{O}_i , & estimated current dollar expenditures, \tilde{O}_i , using MS Excel Solver with

$$\min \sum_{i=1}^{N} \left(\widetilde{O}_i - \hat{O}_i \right)^2$$

Overview

- Background
- Methodology
- Results
- Conclusion

Results

- Shape & Scale Regression Models
- Test Regression Model Assumptions
 - Normality
 - Constant Variance
 - Independence
- Validate Shape & Scale Model Robustness
- Rayleigh & Weibull Model Comparison

Shape \(\beta \) Model

Least Square Estimates by Predicted Plot

Shape Model Summary of Fit	
RSquare	0.310116
RSquare Adj	0.274185
Root Mean Square Error	0.763702
Mean of Response	2.724529
Observations (or Sum Wgts)	102

Shape Model Analysis of Variance						
Source	DF	Sum of Squares Mo	ean Square	F Ratio		
Model	5	25.169127	5.03383	8.6308		
Error	96	55.991124	0.58324	Prob > F		
C. Total	101	81.160251		<.0001		

Shape Model Parameter Estimates						
Term	Estimate	Std Error	t Ratio	Prob> t		
Intercept	1.2995608	0.32514	4	0.0001		
ln(1/Dur)	-0.9732540	0.160373	-6.07	<.0001		
Army	-0.4234340	0.20643	-2.05	0.043		
Navy	-0.4856610	0.188816	-2.57	0.0116		
Electronic	-0.5450790	0.181523	-3	0.0034		
Space	-1.1001890	0.562901	-1.95	0.0536		

Scale & Model

Scale Model Summary of Fit	
RSquare	0.921671
RSquare Adj	0.920888
Root Mean Square Error	0.824422
Mean of Response	5.854373

Scale Model Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Ratio		
Model	1	799.75149	799.751	1176.672		
Error	100	67.96724	0.68	Prob > F		
C. Total	101	867.71873		<.0001		

Scale Model Parameter Estimates							
Term	Estimate	Std Error	t Ratio	Prob> t			
Intercept	0.0683049	0.187391	0.36	0.7163			
Duration	0.7256199	0.021153	34.3	<.0001			

102

Final Regression Models

Final Shape Model

Predicted Shape = 1.300 - 0.973(ln(1/Duration)) - 0.423(Army) - 0.486(Navy) - 0.545(Electronics) - 1.100(Space)

Final Scale Model

 $Predicted\ Scale = .726(Duration)$

Model Validation

Test the Robustness of our regression models

- Did we over-fit the data used to build the models?
 - We determine if the remaining 26 (20%) program LSE shape and scale values fall within a 95% prediction interval
 - 100% and 96% of the LSE ("true") shape and scale values fall within a 95% prediction interval

Conclusion: We did not over-fit the data and both models are robust in predicting the Weibull shape and scale parameters

Rayleigh vs. Weibull

- Use Lee, Hogue, and Gallagher's (1997) method to forecast a budget profile from a point estimates using both the Rayleigh & Weibull Models
- Compare the average correlation between Rayleigh-based & Weibull-based budgets to the 128 completed R&D program budgets

Comparison Results

Correlation Category	Rayleigh	Weibull	Delta
Average Correlation	0.0021	0.6068	0.6047
Minimum Correlation	-0.9051	-0.9984	0.0934
Maximum Correlation	0.9599	0.9986	0.0387

	Correlation	Distribution	% Correlation Distribu		
Correlation (c)	Rayleigh	Weibull	Rayleigh	Weibull	
Correlation < 0.5	106	37	83%	29%	
Correlation ≥ 0.5	22	91	17%	71%	

		Correlation < 0.5		% Correla	tion < 0.5
Duration	Programs	Rayleigh	Weibull	Rayleigh	Weibull
Duration < 7	51	41	22	80%	43%
Duration ≥ 7	77	66	15	86%	19%

Potentially Misleading

• 52% of Rayleigh-based budgets are negatively correlated (inversely forecasted) to actual budgets

Overview

- Background
- Methodology
- Results
- Conclusion

Conclusions

- The Weibull out performs the Rayleigh model when forecasting R&D programs budgets on average 60%
- Potential User Model

Questions

Backup Slides

Influential Data Points

- •Determines if observations have large effects on our regression parameter estimates.
- •Values greater than 0.5 are considered significant influential observations (Neter, 1996)

Scale Model Assumptions

Scale Model Residual Normality Test

- •Plot the distribution of the residuals
- •Fit a normal curve
- •p value > 0.05 than residuals are normally distributed

Scale Model Assumptions

Scale Model Constant Variance Test

- •Plot the residuals by Predicted
- •Visually determine if values are uniformly distributed
- •Reasonably uniform distribution

Influential Data Points

- •Determines if observations have large effects on our regression parameter estimates.
- •Values greater than 0.5 are considered significant influential observations (Neter, 1996)

*Shape Model Assumptions

Shape Model Residual Normality Test

- •Plot the distribution of the residuals
- •Fit a normal curve
- •p value > 0.05 than residuals are normally distributed

Shape Model Assumptions

Shape Model Constant Variance Test

- •Plot the residuals by Predicted
- •Visually determine if values are uniformly distributed
- •Reasonably uniform distribution

Conclusion

- Limitations
- Future Research
- Conclusion and Questions

Limitations

- Scope of the Research Effort
 - Funding constraints due to budgets not meeting fiscal expenditure requirements
- Accuracy of the Total Program Cost Estimate
- Programs with 4 or less budget years
 - 63 percent are not Weibull distributed
 - Expenditures show no consistent distribution
- Limited to Army, Navy, and Air Force ACAT I R&D programs

Future Research

- Compare Initial and Weibull-based forecasted budgets to final budgets
 - Only 13 programs to evaluate
 - Too small to draw any statistical conclusions
- Apply the same methodology to other data sources (lower ACAT programs)

Budgets to Expenditures

OSD Outlay Rates (as Percentages

S 1	S 2	S 3	S 4	S 5
50%	30%	10%	7%	3%

		Budget Profile	Expenditure Profile in Current \$ Million		
#	FY	$B_i = Current$	$O_{i} = B_{i} s_{1} + B_{i-1} s_{2} + B_{1-2} s_{3} + B_{i-J} s_{J}$	=	Current \$
1	2002	$\boldsymbol{B}_{I} = 100.0$	$O_{I} = B_{I} S_{I}$	=	50.0
2	2003	$B_2 = 300.0$	$O_2 = B_2 s_1 + B_1 s_2$	=	180.0
3	2004	$\boldsymbol{B}_{\beta} = 700.0$	$O_3 = B_3 s_1 + B_2 s_2 + B_1 s_3$	=	450.0
4	2005	$B_4 = 1100.0$	$O_4 = B_4 s_1 + B_3 s_2 + B_2 s_3 + B_1 s_4$	=	797.0
5	2006	$B_{5} = 1800.0$	$O_5 = B_{5}s_1 + B_{4}s_2 + B_{3}s_3 + B_{2}s_4 + B_{1}s_5$	=	1324.0
6	2007	$B_{6} = 2500.0$	$O_{6} = B_{6} S_{1} + B_{5} S_{2} + B_{4} S_{3} + B_{3} S_{4} + B_{2} S_{5}$	=	1958.0
7	2008	$B_7 = 2900.0$	$O_7 = B_{7}s_1 + B_{6}s_2 + B_{5}s_3 + B_{4}s_4 + B_{3}s_5$	=	2478.0
8	2009	$B_8 = 300.0$	$O_8 = B_{8}S_1 + B_{7}S_2 + B_{6}S_3 + B_{5}S_4 + B_{4}S_5$	=	1429.0
9	2010	$B_9 = 200.0$	$O_9 = B_{9} s_1 + B_{8} s_2 + B_{7} s_3 + B_{6} s_4 + B_{5} s_5$	=	709.0
10	2011	$\boldsymbol{B}_{10} = 100.0$	$O_{10} = B_{10} S_1 + B_{9} S_2 + B_{8} S_3 + B_{7} S_4 + B_{6} S_5$	=	418.0
11	2012		$O_{11} = B_{10} S_2 + B_{9} S_3 + B_{8} S_4 + B_{7} S_5$	=	158.0
12	2013		$O_{12} = B_{10} s_3 + B_{9} s_4 + B_{8} s_5$	=	33.0
13	2014		$O_{13} = B_{10} S_4 + B_{9} S_5$	=	13.0
14	2015		$O_{14} = B_{10} s_5$	=	3.0

AFIT

Current \$ to Constant \$

		Expenditures		I	nfla	tion	Annual Expendi	tur	e Profile	
#	FY	C	urr	ent \$	c_{i}	=	Index	$O*_i=O_i/c_i$	=	CY02\$M
1	2002	O ₁	=	50.0	c_1	=	1.0000	$O*_1=O_1/c_1$	=	50.0
2	2003	<i>O</i> ₂	=	180.0	c_2	=	1.0250	$O*_2 = O_2/c_2$	=	175.6
3	2004	<i>O</i> 3	=	450.0	<i>c</i> ₃	=	1.0500	$O*_3 = O_3/c_3$	=	428.6
4	2005	O 4	=	797.0	<i>c</i> ₄	=	1.0750	$O*_{4} = O_{4}/c_{4}$	=	741.4
5	2006	<i>O</i> 5	=	1324.0	<i>C</i> 5	=	1.1000	$O*_{5} = O_{5}/c_{5}$	=	1203.6
6	2007	0 6	=	1958.0	<i>c</i> ₆	=	1.1250	$O*_6=O_6/c_6$	=	1740.4
7	2008	O 7	=	2478.0	c 7	=	1.1500	$O*_{7}=O_{7}/c_{7}$	=	2154.8
8	2009	0 8	=	1429.0	<i>c</i> ₈	=	1.1750	0 * 8 = 0 8 / c 8	=	1216.2
9	2010	O 9	=	709.0	C 9	=	1.2000	$O*_{g}=O_{g}/c_{g}$	=	590.8
10	2011	<i>O</i> 10	=	418.0	c 10	=	1.2250	$O^*_{1\theta} = O_{1\theta}/c_{1\theta}$	=	341.2
11	2012	0 11	=	158.0	c 11	=	1.2500	$O*_{11}=O_{11}/c_{11}$	=	126.4
12	2013	<i>O</i> 12	=	33.0	c 12	=	1.2750	$O*_{12}=O_{12}/c_{12}$	=	25.9
13	2014	<i>O</i> 13	_	13.0	c 13	=	1.3000	$O*_{13} = O_{13}/c_{13}$	=	10.0
14	2015	O 14	=	3.0	c 14	=	1.3250	$O*_{14} = O_{14}/c_{14}$	=	2.3

AFIT

Perform GOF Statistics

- Perform GOF Statistical Tests Using
 - Komolgorov-Smirnov
 - Cramer-von Mises
 - Anderson-Darling
- Unger (2001) Modifies the Continuous Distribution GOF Tests to Perform GOF Test for Discrete Distributions (Program Expenditures)

Komolgorov-Smirnov GOF Results

Program Duration in Years	Programs	Accept	Reject	% Accept	% Reject
Duration<= 3	5	3	2	60%	40%
3 <duration<=4< td=""><td>17</td><td>11</td><td>6</td><td>65%</td><td>35%</td></duration<=4<>	17	11	6	65%	35%
4 <duration<=5< td=""><td>15</td><td>14</td><td>1</td><td>93%</td><td>7%</td></duration<=5<>	15	14	1	93%	7%
5 <duration<=6< td=""><td>14</td><td>14</td><td>0</td><td>100%</td><td>0%</td></duration<=6<>	14	14	0	100%	0%
6 <duration<=7< td=""><td>14</td><td>12</td><td>2</td><td>86%</td><td>14%</td></duration<=7<>	14	12	2	86%	14%
7 <duration<=22< td=""><td>63</td><td>60</td><td>3</td><td>95%</td><td>5%</td></duration<=22<>	63	60	3	95%	5%
Total	128	114	14	89%	11%

Cramer-von Mises GOF Results

Program Duration in Years	Programs	Accept	Reject	% Accept	% Reject
Duration <= 3	5	0	5	0%	100%
3 <duration<=4< td=""><td>17</td><td>1</td><td>16</td><td>6%</td><td>94%</td></duration<=4<>	17	1	16	6%	94%
4 <duration<=5< td=""><td>15</td><td>7</td><td>8</td><td>47%</td><td>53%</td></duration<=5<>	15	7	8	47%	53%
5 <duration<=6< td=""><td>14</td><td>10</td><td>4</td><td>71%</td><td>29%</td></duration<=6<>	14	10	4	71%	29%
6 <duration<=7< td=""><td>14</td><td>13</td><td>1</td><td>93%</td><td>7%</td></duration<=7<>	14	13	1	93%	7%
7 <duration<=22< td=""><td>63</td><td>60</td><td>3</td><td>95%</td><td>5%</td></duration<=22<>	63	60	3	95%	5%
Total	128	91	37	71%	29%

Anderson-Darling GOF Results

Program Duration in Years	Programs	Accept	Reject	% Accept	% Reject
Duration<= 3	5	0	5	0%	100%
3 <duration<=4< td=""><td>17</td><td>7</td><td>10</td><td>41%</td><td>59%</td></duration<=4<>	17	7	10	41%	59%
4 <duration<=5< td=""><td>15</td><td>11</td><td>4</td><td>73%</td><td>27%</td></duration<=5<>	15	11	4	73%	27%
5 <duration<=6< td=""><td>14</td><td>8</td><td>6</td><td>57%</td><td>43%</td></duration<=6<>	14	8	6	57%	43%
6 <duration<=7< td=""><td>14</td><td>10</td><td>4</td><td>71%</td><td>29%</td></duration<=7<>	14	10	4	71%	29%
7 <duration<=22< td=""><td>63</td><td>56</td><td>7</td><td>89%</td><td>11%</td></duration<=22<>	63	56	7	89%	11%
Total	128	92	36	72%	28%

Overall GOF Test Results

Test Type	Accept	Reject	% Accept	% Reject
Kolmogorov-Simerof (K-S)	114	14	89%	11%
Cramer-von Mises (CvM)	91	37	71%	29%
Anderson-Darling (A-D)	92	36	72%	28%
Total	297	87	77%	23%

GOF Results for Budgets \leq 6 Years

Test Type (51 Programs)	Accept	Reject	% Accept	% Reject
Kolmogorov-Simerof (K-S)	42	9	82%	18%
Cramer-von Mises (CvM)	18	33	35%	65%
Anderson-Darling (A-D)	26	25	51%	49%
Total	86	67	56%	44%

GOF Results for Budgets > 6 Years

Test Type (77 Programs)	Accept	Reject	% Accept	% Reject
Kolmogorov-Simerof (K-S)	72	5	94%	6%
Cramer-von Mises (CvM)	73	4	95%	5%
Anderson-Darling (A-D)	66	11	86%	14%
Total	211	20	91%	9%

Regression Analysis

• Test for a relationship between the least squares estimated Weibull scale and shape parameters and possible predictors

Continuous	Nominal	Nominal	Nominal	Nominal
X ₁ =Cost	X ₃ =Army	X ₅ =Aircraft	X ₇ =Missile	X ₉ =Ship
X ₂ =Duration	X ₄ =Navy	X ₆ =Electronic	X ₈ =Munitions	X ₁₀ =Space

$$shape(\hat{\beta}) = \beta_0 + \beta_1(X_1) + \beta_2(X_2) + ...\beta_i(X_i)$$

$$scale(\hat{\delta}) = \beta_0 + \beta_1(X_1) + \beta_2(X_2) + ...\beta_i(X_i)$$

Cost Contributors

Source: Belcher & Dukovich (2000)

Shape & Scale Model

- Tight fit of LSE scale values to our predicted scale regression line
- Indicating that our scale model predicts scale well
- Adjusted R Square—Compares across models with different numbers of parameters using the degrees of freedom in the computation
- Penalizes models for predictors that may increase the R Square but are statistically insignificant (Over-fitting the data)

Weibull Model Flexibility

- Models insignificant funding
- Shape parameter varies giving flexibility in modeling the tail of expenditures

Location (y) Parameter

$$F(t) = d \left[1 - e^{-\frac{time \cdot location}{scale}} \right]^{shape}$$

Shape (β) Parameter

$$F(t) = d \left[1 - e^{-\frac{time - location}{scale}} \right]^{shape}$$

Scale (8) Parameter

$$F(t) = d \left[1 - e^{-\frac{time - location}{scale}} \right]^{shape}$$

Budgets to Expenditures

- Total Obligation Authority (TOA)
 - Budget profile (B_i) in current (Then Year) dollars
- Outlay rates determine amount spent (s_j)
- Expenditure profile in current dollars (O_i)

$$O_i = B_{iS_1} + B_{i-1S_2} + B_{i-2S_3} + \ldots + B_{i-JS_J}$$

- $-O_i$ yearly current dollar expenditures
- $-B_i$ yearly budget dollars
- $-s_J$ yearly average outlay rates

Current \$ to Constant \$

- Expenditures are in current dollars
 - Current dollars have inflation factor
- Remove inflation factor

$$O^*_i = O_i/c_i$$

- $-O_{i}^{*}$ yearly constant dollar expenditures
- $-O_i$ yearly current dollar expenditures
- $-c_i$ inflation indices

Purpose

- Who? OSD PA&E & Military Departments
- What? Analytical tool to forecast R&D budget profiles
- When? New R&D program starts
- Why? Determine reasonableness & improve forecasting of R&D program budget profiles
- How? Weibull Model
- Research Question: Is there a mathematical relationship that can predict the requisite shape and scale parameters to forecast Weibull-based budgets?

